Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5081, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604804

RESUMO

Manipulating the spin state of thin layers of superconducting material is a promising route to generate dissipationless spin currents in spintronic devices. Approaches typically focus on using thin ferromagnetic elements to perturb the spin state of the superconducting condensate to create spin-triplet correlations. We have investigated simple structures that generate spin-triplet correlations without using ferromagnetic elements. Scanning tunneling spectroscopy and muon-spin rotation are used to probe the local electronic and magnetic properties of our hybrid structures, demonstrating a paramagnetic contribution to the magnetization that partially cancels the Meissner screening. This spin-orbit generated magnetization is shown to derive from the spin of the equal-spin pairs rather than from their orbital motion and is an important development in the field of superconducting spintronics.

2.
Proc Natl Acad Sci U S A ; 120(36): e2308972120, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639583

RESUMO

Electronic nematicity has been found in a wide range of strongly correlated electron materials, resulting in the electronic states having-4.5pc]Please note that the spelling of the following author name(s) in the manuscript differs from the spelling provided in the article metadata: Izidor Benedicic. The spelling provided in the manuscript has been retained; please confirm. a symmetry that is lower than that of the crystal that hosts them. One of the most astonishing examples is [Formula: see text], in which a small in-plane component of a magnetic field induces significant resistivity anisotropy. The direction of this anisotropy follows the direction of the in-plane field. The microscopic origin of this field-induced nematicity has been a long-standing puzzle, with recent experiments suggesting a field-induced spin density wave driving the anisotropy. Here, we report spectroscopic imaging of a field-controlled anisotropy of the electronic structure at the surface of [Formula: see text]. We track the electronic structure as a function of the direction of the field, revealing a continuous change with the angle. This continuous evolution suggests a mechanism based on spin-orbit coupling resulting in compass-like control of the electronic bands. The anisotropy of the electronic structure persists to temperatures about an order of magnitude higher compared to the bulk, demonstrating novel routes to stabilize such phases over a wider temperature range.

3.
Nano Lett ; 21(7): 2786-2792, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797261

RESUMO

A key property of many quantum materials is that their ground state depends sensitively on small changes of an external tuning parameter, e.g., doping, magnetic field, or pressure, creating opportunities for potential technological applications. Here, we explore tuning of the ground state of the nonsuperconducting parent compound, Fe1+xTe, of the iron chalcogenides by uniaxial strain. Iron telluride exhibits a peculiar (π, 0) antiferromagnetic order unlike the (π, π) order observed in the Fe-pnictide superconductors. The (π, 0) order is accompanied by a significant monoclinic distortion. We explore tuning of the ground state by uniaxial strain combined with low-temperature scanning tunneling microscopy. We demonstrate that, indeed under strain, the surface of Fe1.1Te undergoes a transition to a (π, π)-charge-ordered state. Comparison with transport experiments on uniaxially strained samples shows that this is a surface phase, demonstrating the opportunities afforded by 2D correlated phases stabilized near surfaces and interfaces.

4.
Sci Adv ; 5(3): eaav3478, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30838332

RESUMO

Control of emergent magnetic orders in correlated electron materials promises new opportunities for applications in spintronics. For their technological exploitation, it is important to understand the role of surfaces and interfaces to other materials and their impact on the emergent magnetic orders. Here, we demonstrate for iron telluride, the nonsuperconducting parent compound of the iron chalcogenide superconductors, determination and manipulation of the surface magnetic structure by low-temperature spin-polarized scanning tunneling microscopy. Iron telluride exhibits a complex structural and magnetic phase diagram as a function of interstitial iron concentration. Several theories have been put forward to explain the different magnetic orders observed in the phase diagram, which ascribe a dominant role either to interactions mediated by itinerant electrons or to local moment interactions. Through the controlled removal of surface excess iron, we can separate the influence of the excess iron from that of the change in the lattice structure.

5.
Phys Rev Lett ; 121(20): 206401, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30500241

RESUMO

The search for one-dimensional (1D) topologically protected electronic states has become an important research goal for condensed matter physics owing to their potential use in spintronic devices or as a building block for topologically nontrivial electronic states. Using low temperature scanning tunneling microscopy, we demonstrate the formation of 1D electronic states at twin boundaries at the surface of the noncentrosymmetric material BiPd. These twin boundaries are topological defects that separate regions with antiparallel orientations of the crystallographic b axis. We demonstrate that the formation of the 1D electronic states can be rationalized by a change in effective mass of two-dimensional surface states across the twin boundary. Our work therefore reveals a novel route towards designing 1D electronic states with strong spin-orbit coupling.

6.
Nat Commun ; 9(1): 2602, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973598

RESUMO

In many high temperature superconductors, small orthorhombic distortions of the lattice structure result in surprisingly large symmetry breaking of the electronic states and macroscopic properties, an effect often referred to as nematicity. To directly study the impact of symmetry-breaking lattice distortions on the electronic states, using low-temperature scanning tunnelling microscopy we image at the atomic scale the influence of strain-tuned lattice distortions on the correlated electronic states in the iron-based superconductor LiFeAs, a material which in its ground state is tetragonal with four-fold (C4) symmetry. Our experiments uncover a new strain-stabilised modulated phase which exhibits a smectic order in LiFeAs, an electronic state which not only breaks rotational symmetry but also reduces translational symmetry. We follow the evolution of the superconducting gap from the unstrained material with C4 symmetry through the new smectic phase with two-fold (C2) symmetry and charge-density wave order to a state where superconductivity is completely suppressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...